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Four roads to Dark Matter  
Production: LHC 

Gravitational: Indirect: Fermi  

Direct: 

From Max Tegmark 

Rick Gaitskell (Brown) / Dan McKinsey (Yale)LUX Dark Matter Experiment / Sanford Lab

LUX – the Instrument
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Direct (LUX)

Gravitational observations: 
Bullet cluster
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Weakly Interacting Massive Particles

!"##$ ≃ &'
()*
'

Correct relic abundance for (+,~ .
/./1 ×100 GeV



5

visible sector DM
mediator

Hidden sector
in which dark matter is secluded

A very small coupling is allowed
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II. LEPTOPHILIC NEXT-TO-MINIMAL 2HDM PORTAL VECTOR DARK MATTER

A. The Model

We consider a model with two Higgs doublets, �1,�2, and a complex scalar dark Higgs field

�S . The CP-conserving potential for the Higgs sector is described by
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where �S is a singlet under the SM gauge fields. As usual, we have imposed a discrete Z2 symmetry

to the Higgs potential, such that �1 ! �1, �2 ! ��2, and �S ! �S , under which the tree-level

flavor changing neutral currents (FCNCs) are absent. The Z2 symmetry is softly broken by the

term containing m
2
12. On the other hand, we have considered that �S is changed in the dark

Udm(1) gauge group, while other Higgs fields and SM particles have no such quantum number.

The Udm(1) group contains an abelian gauge boson, Xµ. After spontaneous symmetry breaking,

the vacuum expectation value (VEV) of �S generates a mass for Xµ, and a discrete Z0
2 symmetry:

Xµ ! �Xµ,�S ! �⇤
S
, is still maintained, such that Xµ is stable and can serve as a (vector) dark

matter candidate.

The relevant kinetic terms in the dark sector are given by

LDM = �
1

4
Xµ⌫X

µ⌫ + (Dµ�S)
†(Dµ�S) , (2)

where Xµ⌫ = @µX⌫ � @⌫Xµ, and the covariant derivative is defined as

Dµ�S = (@µ + igXQ�S
Xµ)�S , (3)

with Q�S
the Udm(1) change of �S . After spontaneous symmetry breaking, we have

�S =
1
p
2
(vS + h3), (4)

where the imaginary part of �S is absorbed by the vector gauge boson (dark matter) due to the

Z0
2 symmetry: Xµ ! �Xµ, and the vector gauge boson obtains a mass, mX = gXQ�S

vS . In

this paper, we will simply take Q�S
= 1; in other words, Q�S

and gX are lumped together. The

interacting terms of the dark sector is given by

L
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3 + gXmXXµX

µ
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The relevant kinetic terms in the dark sector are
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(a) (b) (c) (d)

FIG. 2. Feynman diagrams that dominantly contribute to the DM annihilation cross section relevant to relic

abundance and GC gamma-ray excess, where (a), (b), (c), and (d) are for the 4-vertex, s-, t-, u-channels,

respectively.

B. The Gamma-Ray Spectrum Originating from the Two-Step Cascade Dark Matter

annihilations: Determining mX ,mS , and mA

The di↵erential gamma-ray flux, arising from the two-step cascade vector DM annihilations,

can be expressed by

d��

dE
=

1

8⇡m2
X

X

f

h�vif
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!

X

Z
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ds⇢

2(r(s, ))d⌦
| {z }

J-factor

, (30)

where the J-factor is the integral of the DM density squared along the line of sight (l.o.s.) and

over the solid angle �⌦ that covers the region of interest (ROI), and h�vif and (dNf
� /dE)X

are the velocity-averaged annihilation cross section and the gamma-ray spectrum produced per

annihilation with final state f , respectively. Here, for illustration, we take the dominant process

depicted in Fig. 1 as an example. The final states are dominated by the ⌧ production, which mainly

arises from the process, h�vi⌧ ' h�viS ⇥ Br(S ! AA) ⇥ Br(A ! ⌧⌧), with h�viS ⌘ XX ! SS,

Br(S ! AA) ' 1 and Br(A ! ⌧⌧) ' 1. We can perform two-step Lorentz boosts to transform

the gamma-ray spectrum given in the A boson rest frame, (dN ⌧
� /dE)A, to the XX center of mass

(CM) frame1. For (dN ⌧
� /dE)A, we will use the PPPC4DMID result [13, 14], which is generated

using PYTHIA 8.1 [15]. Thus, (dN ⌧
� /dx2)X = mX(dN ⌧

� /dE)X can be written as
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1 We first boost the spectrum to the S rest frame and then to the CM frame of the XX pair.

Also relevant to dark matter relic density
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Chemically interacting with the thermal bath
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Figure 4. A summary of the phenomenology in a model with a vector dark matter candidate, X,
which annihilates to a pair of scalars, ⇢, which decay through mixing with the Standard Model Higgs
boson. Throughout each frame, we have chosen the value of the hidden sector vacuum expectation
value in order to obtain a thermal relic abundance equal to the measured cosmological dark matter
density. In the left frame, we plot the maximum value of the Higgs mixing parameter, sin2 ✓, as
derived from direct detection constraints [49, 77, 78]. In the right frame, we plot the annihilation
cross section (in units of 10�26 cm3

/s) evaluated at a velocity of v = 10�3
c, as appropriate for indirect

searches.

where �⇢,X =
q

1� 4m2
⇢,X

/s. In the low-velocity limit, this reduces to:
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Interactions thorough the Higgs portal (see Sec. 2.2) lead to the following spin-independent
scattering cross section with nuclei:

�
Vector
nucleon =

f
2
N

4⇡

µ
2
XN

m
2
N

m
2
X


m

2
X

v�vH

sin 2✓
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1

m2
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�
1

m
2
h

◆�2
, (2.16)

where fN ' 0.3 and mN is the nucleon mass.
After fixing the value of v� to obtain the desired relic abundance, we calculate both

the elastic scattering cross section with nuclei and the low-velocity annihilation cross section.
These results are shown in Fig. 4.

We note that there exists significant parameter space within this model in which the
mixing between the ⇢ and the Standard Model Higgs boson is quite significant, especially
around m⇢ ⇠ 125 GeV, where there is a cancellation in the dark matter’s elastic scattering
cross section with nuclei (see Eq. 2.16). In this region of parameter space, the process XX !

h⇢ can account for up to ⇠ 20% of dark matter annihilations, after applying constraints from
colliders (see Sec. 4). We note that the gamma-ray spectrum that results from this channel is
fairly similar to that from XX ! ⇢⇢ in this mass range. Furthermore, the dark matter could
also annihilate directly into Standard Model fermions thorough the Higgs resonance, although
this channel is relevant only in a very narrow region of parameter space nearmX ' mh/2 [85],
and we do not consider this possibility further.

– 8 –

Mixing angle !: 
constraint by spin-independent scattering cross section with nuclei 

From 1709.07002, by Escudero, Witte, Hooper
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the latter,

d(yX + yS)

dx
' �Cx(yS � y

eq
S
) for x & 10 , (53)

with

C ⌘

p
90

⇡
Mpl

g
1/2
⇤
he↵

�S!AA

m
2
X

. (54)

There are two reasons that yX + yS ' 4yS can be a good approximation in Eq. (53). One is

that initially we have yX(1) ' y
eq
X
(1), yS(1) ' y

eq
S
(1), and y

eq
X

' 3yeq
S
(1). Two is that because of

y
eq
X
/(3yeq

S
) . 1 for x > 1, and moreover yeq

X
. y

eq
S

for x & 10, we have yS(x�) � yX(x�) for a small

width of S as shown in Fig. 7(d).

The solution to Eq. (53) at x = x� reads

yS(x�)

yS(1)
' e

�C

8 x
2
�

def
= e

�1
, (55)

and therefore x� '
p
8/C. Because t� ' (1/2)x2�C/�S!AA, Eq. (53) can thus be rewritten as

yS(x�)

yS(1)
' e

��S!AAt�/4 . (56)

We have indicated x� in Fig. 7(c) and (d), which are about 9.1 and 42, respectively, where the

former is still a good approximation in magnitude for yX(x�) ' yS(x�).

Well after the freeze-out temperature, the DM abundance is approximately constant within a

comoving volume. By solving the Boltzmann equation, the present-day DM relic abundance and

freeze-out temperature are given by [34? ]

⌦DMh
2
'

1.04⇥ 109 GeV�1

J
p
8⇡g⇤Mpl

, (57)

where

J =

Z 1

xf

h�viXX!SS

x2
dx ⇡

h�vi
(0)
XX!SS

xf
, (58)

h ' 0.673 is the scale factor for the present-day Hubble constant. Here g⇤ & 87.25, and we will

adopt g⇤ ⇡ 87.25.

VI. CONCLUSIONS
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FIG. 2. Feynman diagrams that dominantly contribute to the DM annihilation cross section relevant to relic

abundance and GC gamma-ray excess, where (a), (b), (c), and (d) are for the 4-vertex, s-, t-, u-channels,

respectively.

equation,

@fh

@t
�Hp

@fh

@p
= C[fh] , (7)

where H is the Hubble expansion parameter, p =
q

E
2
h
�m

2
h
is the momentum of the hidden par-

ticle, and C[fh] is the collision term. During the process of the thermal evolution, the distribution

follows Bose-Einstein statistics,

fh(Eh, Th) =
1

e(Eh�µh)/Th � 1
, (8)

with µh is the chemical potential of the particle h(⌘ X or S). In the present case, we consider

mX & mS ⇠ O(10 GeV) and the thermal evolution that the elastic scattering �S $ �S can keep

the X and S particles in thermal equilibrium (TX = TS) until the dark matter freezes out. Through

out this paper, we will use Th(⌘ TS) to denote the temperature of the hidden scalar, while the

dark matter follows the same temperature until the freeze-out temperature Td = Th(ad) after that

the TX(a) ' Td · (ad/a)2, where a is the cosmic scale factor and ad is its corresponding value at Td.

For a particle h1, the generic form of the collision term described by “h1h2 · · · b1b2 · · · $

h
0
1h

0
2 · · · b

0
1b

0
2 · · · ” can be written as

C[fh1 ] =
1

2Eh1gh1

Z
d⇧h2 . . . d⇧b1d⇧b2 . . . d⇧h

0
1
d⇧h

0
2
. . . d⇧b

0
1
d⇧b

0
2
. . .

⇥ (2⇡)4�(4)(ph1 + ph2 + · · ·+ pb1 + pb2 + · · ·� ph0
1
� ph0

2
� · · ·� pb01

� pb02
� · · · )|M |

2

⇥
���0

SS0

h
fh0

1
fh0

2
· · · fb01

fb02
· · · (1 + fh1)(1 + fh2) · · · (1± fb1)(1± fb2)

� fh1fh2 · · · fb1fb2 · · · (1 + fh0
1
)(1 + fh0

2
) · · · (1± fb01

)(1± fb02
)
i
, (9)

THERMAL EVOLUTION: Boltzmann Equation 

In the homogeneous isotropic Friedmann-Robertson-Walker 
Universe 

!"
!# = %["']

!"
!# =

)"'
)# +

!+,
!#

)"'
)+, +

!-
!#
)"'
)- +

!-̂,
!#

)"'
)-̂,

Boltzmann Equation 

Collision term



11

Moment of Boltzmann Equation 6

space,

nX(Th) = gX

Z
d
3
p

(2⇡)3
fX(Th), nS(Th) = gS

Z
d
3
p

(2⇡)3
fS(Th) . (13)

For the hidden scalar interacting with the SM particles which are in thermal equilibrium, the

coupled Boltzmann equations for the hidden sector are thus given by
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ii are respectively the thermally
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the details for these results are given in Appendices. Note that only n
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while all other number densities appearing Eqs. (14) and (15) are functions of “Th”. Note also

that for h�vi, h�i and h�i, we have taken their leading approximations which are independent of
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cannibal annihilations
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Taking the moment integral ∫ "#$
%& # '( to the Boltzmann 

eq. of the hidden scalar, we get 

8

Thus, if the XX ! SS annihilation is s-wave, the solution is y1
X
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to match the observed density parameter of the present-day DM relic abundance ⌦DM = (0.1198±

0.0026)/h2 [2, 3], where Y
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X

is related to y
1
X

via Eq. (16), s0 = 2891 cm�3 is the present-day
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the leading approximation of the s-wave annihilation cross section.

B. Second moment of the Boltzmann equations — Th vs. T

We consider the case that the DM particles keep the thermal equilibrium with the hidden scalar

particles before DM freeze out. Here we focus on the study about the temperature evolution of

the hidden scalar S. Its temperature is a↵ected by the following interactions — (i) annihilation:

SS $ SM SM, (ii) elastic scattering: S + SM $ S + SM, (iii) cannibalism including SSS $ SS,

XSS $ XS, XXS $ SS, SSS $ XX, and XXX $ XS, and (iv) decay: S ! SM SM.

Multiplying Eq. (7) by the energy ES and then performing the integration over the momentum

space, we can have the relevant moment of the Boltzmann equation for the temperature evolution
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…, and the temperature evolution of the hidden scalar 

where

In this model, )* ∼ )( ∼ ,(10 012) and the elastic scattering χS ↔ χS can 
keep the X and S particles in thermal equilibrium (4* = 4( ) until the dark 
matter freezes out. 

Temperature evolution of the hidden scalar 
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!"#$(&")
( ) *( +→( ∼ . (&)

Set the time scale &"/ corresponding to decoupling of 0 ↔ !
process, 0 ≠ !

After &"/, !" &" does not follow up !"#$(&") 

Cannibal annihilations: 
Total entropy of the hidden sector is still conserved
Temperature of hidden sector is thus heated
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S

SM

S S

SM

S

S

SM

SM
annihilation Elastic scattering 

with SM

!"#$(&)
( )* ∼ , !" &

Set decoupling temperature 
for this annihilation   

!"-#$ (&) )#. * ∼ , &
Set kinetic decoupling 

temperature
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Chemical equilibrium keeping ! = # when $%,' ≲ ) :

Hidden sector: thermal equilibrium with the bath

Kinetic equilibrium

Annihilation to SM,  * * → SM SM: 
./
01(3)

5
6 7 ≳ 9 3 ./(3:) ./ 3: → ./

01(3) &  3: → 3

decoupling quickly when 3 < </

Decay to SM,  * → SM SM:     
Γ/ ./

01 3 ≳ 9 ./ 3: ./ 3: → ./
01(3) &  3: → 3

Cannibalization: 3 → 2 for hidden sector (comoving entropy density conserved) 
.:
01(3:)

5
6 75 K→5 ≳ 9 3 ./ 3: → ./

01 3: , TM may be heated  

Elastic scattering, * SM → * SM: 

./N
01 (3) 60O 7 ≳ 9 3 3: → 3

Boltzmann 
suppression
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WIMP
!" =

$%
&"

, ' → SM SM becomes significant

+,- = ./ ≃ 22

2 = 0.00016,~80 GeV, 69 = 0.8 6,, ;, = 0.16

!=> ≃ ?@ ' SM ↔ ' SM kinetic decoupling

!>>,  ' → SM SM chemical decoupling

Dark matter decouples from S kinetically and chemically

After decoupling, BC
BC
D ≃

E
EF

G
, i. e. , TK ∝ MG
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Non-WIMP
!" =

$%

&"
, ' → SM SM becomes significant

+,
- = ./ ≃ 25

3 = 5×10789,~80 GeV, 9< = 0.8 9,, ?, = 0.1645

!BC ≃ D, ' SM ↔ ' SM kinetic decoupling

!CC, ' → SM SM chemical decoupling

Dark matter decouples from S kinetically and chemically

cannibalization

∝ ⟨HI⟩,,→KK
L
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Non-WIMP
!" =

$%

&"
, ' → SM SM becomes significant

+,
- = ./ ≃ 98

3 = 1×10789,~80 GeV, 9; = 0.8 9,, >, = 0.24

!AB ≃ C. C, ' SM ↔ ' SM kinetic decoupling

' → SM SM does not play a roller for 
the thermal equilibrium 

Dark matter decouples from S kinetically and chemically, but follows 
the same temperature with S

cannibalization

∝ ⟨GH⟩,,→JJ
K
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Summary

visible sector DM
mediator

Hidden sector in which dark matter is secluded

A very small coupling is allowed

!"#$ < !&'

Using the simplest secluded vector dark matter 
model, I have given the thermal evolution results of 
the hidden sector 



20

Summary

1. cascade DM annihilation can well account for GC gamma-ray emission.

2. We have discussed a simplest secluded vector dark matter model

3. The mechanism resulting in the cannibally co-decaying vector dark 
matter can explain the GC gamma-ray emission, the relic density 
simultaneously, and other constraints.
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Gamma-ray Sky

From Satya’s Talk @ LHCDM, 2015

Fermi bubblesIsotropic gamma-ray background
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Inverse Compton Scattering

Sources of Galactic Diffuse Emission (GDE) 
1. Inverse Compton: CR electrons up-scattering low-energy photons 
2. Neutral pion decays: CR protons inelastic collision with nuclei (gas)  
3. Bremsstrahlung : CR electrons interacting with interstellar gas 

Sources of Galactic Diffuse Emission (GDE)
1. Inverse Compton: CR electrons up-scattering low-energy photons 

2. Neutral pion decays: CR protons inelastic collision with nuclei (gas) 

3. Bremsstrahlung : CR electrons interacting with interstellar gas

Sources of Galactic Diffuse Emission (GDE)
1. Inverse Compton: CR electrons up-scattering low-energy photons 

2. Neutral pion decays: CR protons inelastic collision with nuclei (gas) 

3. Bremsstrahlung : CR electrons interacting with interstellar gas

From Satya’s Talk @ LHCDM, 2015



23

Galactic Center Region

Complex region: CR intensities, density of radiation fields and gas are highest; large 
uncertainties modeling the gamma-ray interstellar emission,  significant foreground/
background contribution with long integration path over the entire Galactic disc

Large density of gamma-ray sources: many energetic sources near to or in the line of sight 
of the GC, difficult to disentangle from interstellar emission

A signal of new physics (dark matter annihilation/
decay) is also predicted to be largest here
Claims of a potential signal of dark matter 
annihilation from this region have been made by 
several groups in the past few years (see next talk  
and Thursday afternoon session on the Galactic 
center)

GC: Challenges and Potential

1. Complex region: CR intensities, 
density of radiation fields and gas 
are highest; large uncertainties 
modelling the gamma-ray emission 
!
2. A signal of new physics (dark 
matter annihilation/ decay) is also 
predicted to be largest here 
!
3. One of the main goals of Fermi-
LAT : understanding CR, 
interstellar gas and radiation 
properties via various 
observations. Those are the inputs 
to the analysis. !

b

GC

Source

l

d

Earth

(x,y,z)=(r_sun, 0, 0)
x

y

z

Figure 5: The Earth is located at ~x = 0 (such that d is the distance from us); the Galactic
Center at x = r�, y = z = 0; and the Galactic plane corresponds to z ⇡ 0. Consequently
cos ✓ = x/d = cos b · cos `.

With these ingredients, one explicitly has for the di↵erential � ray flux from a region
�⌦
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>>>><

>>>>:
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(annihilation)
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(decay)

(15)

4.2 The Line-of-Sight Integral and Halo Uncertainties

[144]
While DM can annihilate directly to a pair of hard photons, this process is typically

loop suppressed. The production of photons is dominated by production of SM particles
which subsequently produce photons through decays, or to a lesser extent bremsstrahlung.
The di↵erential flux of such photons from a given direction  is given by,

dN

d⌦dE
( ) =

1

4⇡⌘

f 2

�J( )

m2
�

X

i

h�vii
dN i

dE�
, (16)

with ⌘ = 2(4) for self-conjugate (non-self-conjugate) DM. The quantity dN i/dE� is the
spectrum of photons obtained per annihilation for the final state i. The line-of-sight integral,
J( ), is given by

J( ) =

Z

l.o.s.

ds ⇢(r)2 , (17)

where r is the distance from the Galactic center. The quantity f� is the fraction of dark
matter that is doing the annihilation. For simplicity we will assume only one species � is
annihilating, but the formalism can be trivially generalized to many by taking a sum.

In this section we will discuss each of the factors in (16) in turn, paying attention to
the uncertainties and their relation to dark matter properties. We will begin with the
line-of-sight integral, J( ), and continue with the annihilation fraction f�.
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IV. COSMOLOGICAL AND ASTROPHYSICAL CONSTRAINTS

A. The gamma-ray spectrum originating from the two-step cascade dark matter

annihilations: determining mX ,mS , and mA

The di↵erential gamma-ray flux, arising from the two-step cascade annihilations of the vector

DM, can be expressed by

d��
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2(r(s, ))d⌦
| {z }
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, (37)

where the J-factor is the integral of the DM density squared along the line of sight (l.o.s.) and over

the solid angle �⌦ that covers the region of interest (ROI), and h�vif and (dNf
� /dE)X are the low-

velocity averaged annihilation cross section and the gamma-ray spectrum produced per annihilation

with final state f , respectively. For illustration, the dominant process is depicted in Fig. 1, where

the final states are ⌧ ’s, which mainly arise from the process, h�vi⌧ ' h�viXX!SS ⇥ Br(S !

AA) ⇥ Br(A ! ⌧⌧), with Br(S ! AA) ' 1 and Br(A ! ⌧⌧) ' 1. Following the method given in

Ref. [41], we can perform two-step Lorentz boosts to transform the gamma-ray spectrum given in

the A boson rest frame, (dN ⌧
� /dE)A, to the XX center of mass (CM) frame; we first boost the

spectrum to the S rest frame and then to the CM frame of the XX pair. For (dN ⌧
� /dE)A, we

will use the PPPC4DMID result [59, 60], which was generated by using PYTHIA 8.1 [61]. Thus,

(dN ⌧
� /dx2)X = mX(dN ⌧

� /dE)X can be written as
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where

✏2 =
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mX

, ✏1 =
2mA

mS

, (39)
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with E, E1, and E0 being the photon energies in the XX CM frame, S rest frame, and A rest

frame, respectively.
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FIG. 3. Preferred DM mass and annihilation cross-section (1,
2 and 3 � contours) for all single channel final states where
ICS emission can be safely ignored. Vertical gray lines refer
to the W , Z, h and t mass thresholds. The p-values for an-
nihilation to pure W+W �, ZZ and t̄t final states are below
0.05, indicating that the fit is poor for these channels; see
Tab. I. Uncertainties in the DM halo of the Milky Way are
parametrized and bracketed by A = [0.17, 5.3], see Sec. V.
The results shown here refer to A = 1.

that the interpolation at mass threshold agrees with our
own results from PYTHIA 8.186.

In addition to gamma rays, CR electrons and positrons
are produced as final (stable) products of DM annihila-
tions. These CR electrons/positrons, like all other elec-
trons/positrons propagate in the Galaxy and produce
ICS and bremsstrahlung emission.5 Generally, the ICS
emission is expected to be more important for DM mod-
els with significant branching ratios to (light) leptons.
Therefore we separate our discussion to first address the
cases when ICS emission can be safely ignored, before
discussing in detail ICS emission for annihilation to lep-
tons.

A. Single annihilation channels without ICS

We first discuss annihilation to pure two-body annihi-
lation states for the cases when ICS emission can be safely
ignored. This turns out to be all cases except annihila-
tion to electrons and muons. In Fig. 3 we show the best-

5 CR p and p̄ from DM annihilations can also give their own ⇡0

emission of DM origin, but are suppressed from the p̄/p measure-
ments already by at least five orders of magnitude compared to
the conventional Galactic di↵use ⇡0 emission.

Channel
h�vi

(10�26 cm3 s�1)
m�

(GeV) �2
min p-value

q̄q 0.83+0.15
�0.13 23.8+3.2

�2.6 26.7 0.22

c̄c 1.24+0.15
�0.15 38.2+4.7

�3.9 23.6 0.37

b̄b 1.75+0.28
�0.26 48.7+6.4

�5.2 23.9 0.35

t̄t 5.8+0.8
�0.8 173.3+2.8

�0 43.9 0.003

gg 2.16+0.35
�0.32 57.5+7.5

�6.3 24.5 0.32

W+W � 3.52+0.48
�0.48 80.4+1.3

�0 36.7 0.026

ZZ 4.12+0.55
�0.55 91.2+1.53

�0 35.3 0.036

hh 5.33+0.68
�0.68 125.7+3.1

�0 29.5 0.13

⌧+⌧� 0.337+0.047
�0.048 9.96+1.05

�0.91 33.5 0.055
⇥
µ+µ� 1.57+0.23

�0.23 5.23+0.22
�0.27 43.9 0.0036

⇤
��ICS

TABLE I. Results of spectral fits to the Fermi GeV excess
emission as shown in Fig. 2, together with ±1� errors (which
include statistical as well as model uncertainties, see text).
We also show the corresponding p-value. Annihilation into
q̄q, c̄c, b̄b, gg and hh all give fits that are compatible with
the observed spectrum. There is also a narrow mass where
annihilation into ⌧+⌧� is not excluded with 95% CL signifi-
cance. Annihilation to pure W+W �, ZZ and t̄t is excluded
at 95% CL, as is the µ+µ� spectrum without ICS emission
(��ICS). Bosons masses are from the PDG live [101].

fit annihilation cross-section and DM mass for all other
two-body annihilation states involving SM fermions and
bosons. The results are also summarized in Tab. I, where
we furthermore give the p-value of the fit as a proxy for
the goodness-of-fit. As with previous analyses, we find
that annihilation to gluons and quark final states q̄q, c̄c
and b̄b, provides a good fit. In the case of the canonical b̄b
final states, we find slightly higher masses are preferred
compared to previous analyses, see e.g. Refs. [12, 14, 15].
This is because of the additional uncertainty in the high-
energy tail of the energy spectrum that is allowed for in
this analysis. The highest mass to b̄b final states that
still gives a good fit (with a p-value > 0.05) is 73.9 GeV.

As the tail of the spectrum extends to higher energy, we
also consider annihilation to on-shell t̄t and SM bosons.
For t̄t, we find that the fit is poor because the DM spec-
trum peaks at too high an energy (⇠ 4.5 GeV rather than
the observed peak at 1–3 GeV). As the p-value is very low
for this channel, we do not consider it further. Pure an-
nihilation to pairs of W and Z gauge bosons are also ex-
cluded at a little over 95% CL significance. However, per-
haps surprisingly, annihilation to pairs of on-shell Higgs
bosons (colloquially referred to as “Higgs in Space” [102])
produce a rather good fit, so long as h is produced close
to rest. This is analogous to the scenario studied in
Ref. [103] in a di↵erent context. One interesting feature
of this channel is the gamma-ray line at m�/2 ' 63 GeV
from h decay to two photons. This is clearly visible in the
central panel of Fig. 2. The branching ratio for h ! ��
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FIG. 3. Preferred DM mass and annihilation cross-section (1,
2 and 3 � contours) for all single channel final states where
ICS emission can be safely ignored. Vertical gray lines refer
to the W , Z, h and t mass thresholds. The p-values for an-
nihilation to pure W+W �, ZZ and t̄t final states are below
0.05, indicating that the fit is poor for these channels; see
Tab. I. Uncertainties in the DM halo of the Milky Way are
parametrized and bracketed by A = [0.17, 5.3], see Sec. V.
The results shown here refer to A = 1.

that the interpolation at mass threshold agrees with our
own results from PYTHIA 8.186.

In addition to gamma rays, CR electrons and positrons
are produced as final (stable) products of DM annihila-
tions. These CR electrons/positrons, like all other elec-
trons/positrons propagate in the Galaxy and produce
ICS and bremsstrahlung emission.5 Generally, the ICS
emission is expected to be more important for DM mod-
els with significant branching ratios to (light) leptons.
Therefore we separate our discussion to first address the
cases when ICS emission can be safely ignored, before
discussing in detail ICS emission for annihilation to lep-
tons.

A. Single annihilation channels without ICS

We first discuss annihilation to pure two-body annihi-
lation states for the cases when ICS emission can be safely
ignored. This turns out to be all cases except annihila-
tion to electrons and muons. In Fig. 3 we show the best-

5 CR p and p̄ from DM annihilations can also give their own ⇡0

emission of DM origin, but are suppressed from the p̄/p measure-
ments already by at least five orders of magnitude compared to
the conventional Galactic di↵use ⇡0 emission.

Channel
h�vi

(10�26 cm3 s�1)
m�

(GeV) �2
min p-value

q̄q 0.83+0.15
�0.13 23.8+3.2

�2.6 26.7 0.22

c̄c 1.24+0.15
�0.15 38.2+4.7

�3.9 23.6 0.37

b̄b 1.75+0.28
�0.26 48.7+6.4

�5.2 23.9 0.35

t̄t 5.8+0.8
�0.8 173.3+2.8

�0 43.9 0.003

gg 2.16+0.35
�0.32 57.5+7.5

�6.3 24.5 0.32

W+W � 3.52+0.48
�0.48 80.4+1.3

�0 36.7 0.026

ZZ 4.12+0.55
�0.55 91.2+1.53

�0 35.3 0.036

hh 5.33+0.68
�0.68 125.7+3.1

�0 29.5 0.13

⌧+⌧� 0.337+0.047
�0.048 9.96+1.05

�0.91 33.5 0.055
⇥
µ+µ� 1.57+0.23

�0.23 5.23+0.22
�0.27 43.9 0.0036

⇤
��ICS

TABLE I. Results of spectral fits to the Fermi GeV excess
emission as shown in Fig. 2, together with ±1� errors (which
include statistical as well as model uncertainties, see text).
We also show the corresponding p-value. Annihilation into
q̄q, c̄c, b̄b, gg and hh all give fits that are compatible with
the observed spectrum. There is also a narrow mass where
annihilation into ⌧+⌧� is not excluded with 95% CL signifi-
cance. Annihilation to pure W+W �, ZZ and t̄t is excluded
at 95% CL, as is the µ+µ� spectrum without ICS emission
(��ICS). Bosons masses are from the PDG live [101].

fit annihilation cross-section and DM mass for all other
two-body annihilation states involving SM fermions and
bosons. The results are also summarized in Tab. I, where
we furthermore give the p-value of the fit as a proxy for
the goodness-of-fit. As with previous analyses, we find
that annihilation to gluons and quark final states q̄q, c̄c
and b̄b, provides a good fit. In the case of the canonical b̄b
final states, we find slightly higher masses are preferred
compared to previous analyses, see e.g. Refs. [12, 14, 15].
This is because of the additional uncertainty in the high-
energy tail of the energy spectrum that is allowed for in
this analysis. The highest mass to b̄b final states that
still gives a good fit (with a p-value > 0.05) is 73.9 GeV.

As the tail of the spectrum extends to higher energy, we
also consider annihilation to on-shell t̄t and SM bosons.
For t̄t, we find that the fit is poor because the DM spec-
trum peaks at too high an energy (⇠ 4.5 GeV rather than
the observed peak at 1–3 GeV). As the p-value is very low
for this channel, we do not consider it further. Pure an-
nihilation to pairs of W and Z gauge bosons are also ex-
cluded at a little over 95% CL significance. However, per-
haps surprisingly, annihilation to pairs of on-shell Higgs
bosons (colloquially referred to as “Higgs in Space” [102])
produce a rather good fit, so long as h is produced close
to rest. This is analogous to the scenario studied in
Ref. [103] in a di↵erent context. One interesting feature
of this channel is the gamma-ray line at m�/2 ' 63 GeV
from h decay to two photons. This is clearly visible in the
central panel of Fig. 2. The branching ratio for h ! ��

CCMW: Annihilation into gluons, 
!"", ̅%%, !&&, ℎℎ provides a good fit

Low p-value; is not excluded with 
95% CL significance

This is for self-conjugate DM
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