Thermal Evolution of the Secluded Dark Matter

Kwei-Chou Yang (楊桂周) Chung-Yuan Christian University, Taiwan

Fo-Guang-Shan, Kaohsiung, Taiwan December 29-31, 2018

Work is in preparation

Outline

Introduction :

Motivation

- Taking a simplest secluded vector dark matter model as an example
- Theoretical and experimental constraints (partially)
- Thermal evolution of the hidden sector

♦ Summary

Four roads to Dark Matter

Gravitational observations: Bullet cluster

Weakly Interacting Massive Particles

Correct relic abundance for $m_{DM} \sim \frac{\alpha}{0.01} \times 100 \text{ GeV}$

in which dark matter is secluded

The simplest secluded vector dark matter model

Also relevant to dark matter relic density

Mixing angle α :

constraint by spin-independent scattering cross section with nuclei

It hints that $\langle \sigma v \rangle_{XX \to SS}^0$ could be 4 times larger than the WIMP case

THERMAL EVOLUTION: Boltzmann Equation

In the homogeneous isotropic Friedmann-Robertson-Walker

Moment of Boltzmann Equation

Taking the moment integral

$$n_X(T_h) = g_X \int \frac{d^3p}{(2\pi)^3} f_X(T_h), \qquad n_S(T_h) = g_S \int \frac{d^3p}{(2\pi)^3} f_S(T_h)$$

we get the evolution of the number densities

$$\frac{dn_X}{dt} + 3Hn_X = \mp (XX \rightleftharpoons SS)$$

$$\pm (XXX \rightleftharpoons SS) \quad \mp (XXS \rightleftharpoons SS) \quad \pm (SSS \rightleftharpoons XX)$$

$$\frac{dn_S}{dt} + 3Hn_S = \mp (S \rightleftharpoons SM SM) \quad \mp (SS \rightleftharpoons SM SM) \quad \pm (XX \rightleftharpoons SS)$$

$$\pm (XXX \rightleftharpoons SS) \quad \pm (XXS \rightleftharpoons SS) \quad \mp (SSS \rightleftharpoons XX)$$

$$\mp (XSS \rightleftharpoons XS) \quad \mp (SSS \rightleftharpoons SS)$$
cannibal annihilations

11

Temperature evolution of the hidden scalar

Taking the moment integral $\int \frac{d^3p}{(2\pi)^3} E_S$ to the Boltzmann eq. of the hidden scalar, we get

$$ho_S = g_S \int \frac{d^3 p}{(2\pi)^3} E_S f_S \simeq g_S n_S \left(m_S + \frac{3}{2} T_h \right)$$

where $T_h = \frac{2}{3} \int \frac{d^3 p}{(2\pi)^3} \frac{p_S^2}{2m_S} f_S$

..., and the temperature evolution of the hidden scalar

$$\frac{dT_h}{dt} + 2HT_h = \frac{2}{3n_S(T_h)} \left[-\left(\frac{dn_S(T_h)}{dt} + 3Hn_S(T_h)\right) \left(m_S + \frac{3}{2}T_h\right) + C[f_S \cdot E_S] \right]$$

In this model, $m_X \sim m_S \sim O(10 \text{ GeV})$ and the elastic scattering $\chi S \leftrightarrow \chi S$ can keep the X and S particles in thermal equilibrium ($T_X = T_S$) until the dark matter freezes out.

Cannibal annihilations: Total entropy of the hidden sector is still conserved Temperature of hidden sector is thus heated

$$\left(n_h^{eq}(T_h)\right)^2 \langle \sigma \, v^2 \rangle_{3 \to 2} \sim H \, (T)$$

Set the time scale T_h^c corresponding to decoupling of $m \leftrightarrow n$ process, $m \neq n$

After T_h^c , $n_h(T_h)$ does not follow up $n_h^{eq}(T_h)$

$$\left(n_{S}^{eq}(T)\right)^{2}\left\langle \sigma v\right\rangle \sim H\,n_{S}(T)$$

Set decoupling temperature for this annihilation

Set kinetic decoupling temperature

Hidden sector: thermal equilibrium with the bath

Chemical equilibrium keeping $\mu = 0$ when $m_{X,S} \lesssim T$:

WIMP

10¹²

Summary

Using the simplest secluded vector dark matter model, I have given the thermal evolution results of the hidden sector

Summary

- 1. cascade DM annihilation can well account for GC gamma-ray emission.
- 2. We have discussed a simplest secluded vector dark matter model

3. The mechanism resulting in the **cannibally co-decaying** vector dark matter can explain the GC gamma-ray emission, the relic density simultaneously, and other constraints.

Fermi sky

Galactic diffuse

Fermi bubbles

residual (e.g., dark matter)

Isotropic gamma-ray background

From Satya's Talk @ LHCDM, 2015

Sources of Galactic Diffuse Emission (GDE)

- 1. Inverse Compton: CR electrons up-scattering low-energy photons
- 2. Neutral pion decays: CR protons inelastic collision with nuclei (gas)
- 3. Bremsstrahlung : CR electrons interacting with interstellar gas

From Satya's Talk @ LHCDM, 2015

depend on the observational region of interest (ROI) in a particular analysis 23

